Submit Manuscript  

Article Details


Functionally Tailored Electro-Sensitive Poly(Acrylamide)-g-Pectin Copolymer Hydrogel for Transdermal Drug Delivery Application: Synthesis, Characterization, In-vitro and Ex-vivo Evaluation

[ Vol. 10 , Issue. 3 ]

Author(s):

Sudha B. Patil, Syed Z. Inamdar, Kakarla R. Reddy, Anjanapura V. Raghu, Krishnamachari G. Akamanchi, Arun C. Inamadar, Kusal K. Das and Raghavendra V. Kulkarni*   Pages 185 - 196 ( 12 )

Abstract:


Background: To develop electro-sensitive transdermal drug delivery systems (ETDDS) using polyacrylamide-grafted-pectin (PAAm-g-PCT) copolymer hydrogel for rivastigmine delivery.

Methods: Free radical polymerization and alkaline hydrolysis technique was employed to synthesize PAAm-g-PCT copolymer hydrogel. The PAAm-g-PCT copolymeric hydrogel was used as a reservoir and cross-linked blend films of PCT and poly(vinyl alcohol) as rate-controlling membranes (RCMs) to prepare ETDDS.

Results: The pH of the hydrogel reservoir was found to be in the range of 6.81 to 6.93 and drug content was 89.05 to 96.29%. The thickness of RCMs was in the range of 51 to 99 μ and RCMs showed permeability behavior against water vapors. There was a reduction in the water vapor transmission rate as the glutaraldehyde (GA) concentration was increased. The drug permeation rate from the ETDDS was enhanced under the influence of electric stimulus against the absence of an electric stimulus. The increase in flux by 1.5 fold was recorded with applied electric stimulus. The reduction in drug permeability observed when the concentration of GA was increased. Whereas, the permeability of the drug was augmented as an electric current was changed from 2 to 8 mA. The pulsatile drug release under “on– off” cycle of electric stimulus witnessed a faster drug release under ‘on’ condition and it was slow under ‘off’ condition. The alteration in skin composition after electrical stimulation was confirmed through histopathology studies.

Conclusion: The PAAm-g-PCT copolymer hydrogel is a useful carrier for transdermal drug delivery activated by an electric signal to provide on-demand release of rivastigmine.

Keywords:

Electro-sensitive, hydrogel, grafting, transdermal drug delivery, Alzheimer`s disease, rivastigmine.

Affiliation:

Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka, Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Department of Basic Sciences, School of Engineering & Technology, JAIN (Deemed-to-be University), Bangalore 562112, Karnataka, Department of Allied Health Sciences, Shri. B.M. Patil Medical College, Hospital & Research Centre, BLDE (Deemed to be University), Vijayapur 586 103, Department of Dermatology, Shri. B.M. Patil Medical College, Hospital & Research Centre, BLDE (Deemed to be University), Vijayapur 586 103, Department of Physiology, Shri. B.M. Patil Medical College, Hospital & Research Centre, BLDE (Deemed to be University), Vijayapur 586 103, Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, Vijayapur 586 103, Karnataka

Graphical Abstract:



Read Full-Text article